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Abstract

The paper deals with an application of the plane strain analysis in a stochastic three!dimensional soil
medium[ In a framework of random elasticity theory\ the geostatical state of stresses and the problem of a
unit force acting in a statistically homogeneous half!space are considered[ Only the modulus of elasticity is
considered to be random and is modelled as a three!dimensional "2!D# homogeneous random _eld[ As the
result of imposed constrains due to the plane strain assumption the additional body and surface forces are
induced[ In order to determine them\ additional equations must be introduced[ The equations in a form of
constrain relations are proposed in this paper[ These equations are also valid for a case of uniformly
distributed external loading[

First\ the two!dimensional "1!D# problem and its reduction to the uni!axial strain state\ for the gravity
forces and uniform\ unlimited surface loading is considered[ Then\ it is generalised into a 1!D schematization
of the 2!D state[ Next\ the problem of a unit force acting in a statistically homogeneous half!space is
considered[ For a 2!D state of stress and strain the resulting stresses are compared with those for a 1!D
state[ These stresses for the multidimensional state of strain and stress are presented as a sum of two
components[ The _rst one re~ects plane strain state stresses and is given in a form of a 2!D random _eld[
This term allows for incorporating a spatial\ 2!D soil variability into a two!dimensional analysis[ The second
component can be treated as a correction term and it represents the longitudinal in~uence of a 2!D analysis[

Some numerical results are presented in this paper[ The proposed method can be regarded as a framework
for further research aiming at application to a variety of geotechnical problems\ for which the plane strain
state is assumed[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Recently\ geotechnical problems involving uncertainties are receiving considerable attention
from researchers and engineers[ Due to the natural variability of most soils\ limited number of
observations\ accuracy of measurements\ etc[\ there exists a signi_cant uncertainty with respect to
soil parameters[ Consequently\ the results of such analysis as settlement\ bearing capacity\ or slope
stability\ are uncertain too[ In order to develop a rational framework\ which takes into con!
sideration the uncertainty of material\ the analysis must be reformulated into a stochastic one[ It
means that relationships between statistical characteristics of a random input and a random output
must be determined[
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Solutions for various loads applied to a homogeneous "Green and Zerna\ 0857^ Leipholz\ 0863#
and non!homogeneous elastic half!space "Gibson\ 0856^ Kassir\ 0861^ Carrier and Christian\ 0862^
Lomakin\ 0865#\ have played an important role in the development of foundation engineering[ In
a case of stochastic input the elasticity theory becomes random\ so\ the relations between input and
output formally take a form of stochastic partial di}erential equations with random coe.cients[

For an isotropic and homogeneous elastic soil medium the Young|s modulus and the Poisson|s
ratio can be taken as the elastic parameters[ The spatial variability of these parameters can be
e.ciently modelled as a multivariate and multidimensional random _eld "Wilde 0870^ Vanmarcke\
0872#[

A solution of the stochastic partial di}erential equations governing random elasticity leads to
displacements and stresses\ which are also multivariate\ 2!D random _elds[ This solution\ in most
cases\ is obtained in a numerical way\ mainly using the stochastic _nite element method[ Many
variants of this method have been developed recently "Bucher and Shinozuka\ 0877^ Deodatis\
0878^ Liu et al[\ 0875^ Shinozuka\ 0876^ Spanos and Ghanen\ 0878^ Yamazaki and Shinozuka\
0877#[ Also approximated analytical methods are available\ like the perturbation procedure
"imposing small ~uctuation assumption# or Adomian|s decomposition method "Eimer\ 0861^
Zeitoun and Baker\ 0877#[ This group of methods has been a subject of some papers prepared by
the author "Przew<o�cki\ 0883\ 0884#[

In many geotechnical engineering problems\ like retaining walls\ strip foundations\ or slopes
and embankments "Fig[ 0#\ the plane strain analysis is widely used[ Such analysis is reasonable for
elongated bodies of uniform cross!section subjected to a uniform loading along their longitudinal
axes "x0#[ It means that in the stochastic soil medium there is a full correlation in this direction\ or
in other words\ a random variable model is assumed[ Usually this is not so\ and in some soils\
depending on their origin\ there can be even a signi_cant horizontal variability of the material
elastic parameters[ Including such variabilities in the numerical analysis would require a 2!D
stochastic _nite element method[ This method is not always available and its application is possible
on a fast computer[ Thus\ the question of the validity of plane strain assumption for 2!D random
_elds of those parameters arises[

The main aim of the paper is the reduction of dimensions in the stochastic medium[ The following
basic questions should be answered]

"0# When is the plane strain schematization of the 2!D stochastic medium justi_ed<
"1# It is possible to take into account 2!D spatial variability of soil properties in the plane strain

analysis\ and how to do it<

In order to answer them\ an attempt is made to express stresses in the real state in terms of
stresses in the reduced state[ First\ the 1!D problem and its reduction to the uni!axial state\ for the
gravity forces is considered[ Then\ this is generalised into 1!D schematization of the 2!D state[
Next\ the problem of a unit force acting in a statistically homogeneous half!space is considered[
For a 2!D state of stress and strain the resulting stresses are compared with those for a 1!D state[

1[ Stochastic soil medium

Di}erent statistical models are proposed in the literature to describe a stochastic soil medium[
Basically\ they can be grouped into random variable models "Lumb\ 0863# and random _eld
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Fig[ 0[ Examples of elongated geotechnical structures[

models "Wilde\ 0870^ Vanmarcke\ 0872#[ In elementary probability theory\ the _rst models describe
outcomes of experiments[ In stress and deformation analysis performed in the framework of the
elasticity theory\ usually Young|s modulus is taken as a random variable[ In a second!order
description\ such a variable may be de_ned by its mean and standard deviation[ Observing the
outcome of all experiments is equivalent to observing the realisation of the random _eld[ So the
random _eld may be seen as the indexed family of random variables[ The concept of random _elds
allows one to describe the spatial variability of any soil parameter[ Again\ in the second!order
representation\ the random _eld can be characterised by an average value\ standard deviation\ and
an autocorrelation function\ which describe the spatial dependence between the values of soil
parameters at di}erent points in space[ The random variable model can be viewed as a limiting case
of the random _eld theory\ for the autocorrelation distance approaching in_nity " full correlation#[

It is assumed in this paper that the soil medium is a linearly elastic and isotropic body\ so its
response is de_ned by two elastic parameters] Young|s modulus E and Poisson|s ratio n[ Ran!
domness of these parameters in~uence the distribution and variance of stresses[ It is well known
that the relative variation of Poisson|s ratio is much smaller than the variation of modulus of
elasticity[ To _nd the in~uence of both these parameters on variation of stress distribution a
numerical calculation using stochastic _nite element method were performed[ A horizontal stratum
of thickness h � 19 m subjected to uniformly distributed external loading of intensity p � 09 kPa
was considered[ The results\ in dimensionless form\ are presented in Fig[ 1[ They were performed
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Fig[ 1[ Change of standard deviation of vertical normal stress with depth\ regarding randomness only of E and both n

and E[

for covariance function given by "1# and "2#\ for following data] average values of elastic EÞ� 099
MPa\ n¹ � 9[2\ decay coe.cient l � 0 and for two values of coe.cient of variation a � 9[0 and
a � 9[1[

Separate calculations were performed] two for randomness of both parameters E and n and two
when only the modulus of elasticity was treated as a random _eld and the Poisson|s ratio was
assumed as a deterministic value[ It is visible in Fig[ 1 that the randomness of the Poisson|s ratio
has a secondary in~uence on the standard deviation of stress and for the real values of Poisson|s
ratio coe.cients of variation\ which are generally not higher than 9[0\ it can be omitted[

It is further assumed that\ for simplicity\ n is taken as a deterministic constant\ while E is a
homogeneous random _eld\ which for a 2!D space\ can be presented in the following form]

E � EÞ¦E	"x0\ x1\ x2# � EÞð0¦ab"x0\ x1\ x2#Ł "0#

where a is coe.cient of variation\ b"x0\ x1\ x2# is normalized\ homogeneous random _eld\
ðb"x0\ x1\ x2#Ł � 9\ Var ðb"x0\ x1\ x2#Ł � 0\ ð[ [ [Ł is averaging operator[

The form of presentation of random _eld of the elasticity modulus given by eqn "0# and its
application in numerical analysis is generally justi_ed if the coe.cient of variation a is su.ciently
small\ usually less than 9[04[

For the convenience of the further analysis\ only the separable correlation structure is considered\
so the random _eld is assumed to be statistically anisotropic[ Such an assumption has been



J[ Przew<o�cki : International Journal of Solids and Structures 25 "0888# 4122Ð4143 4126

Table 0
Results of correlation analysis

Correlation function Coe.cients Loss function

t−T t−m t−T t−m

R"r# � e−b=r b � 4[912 b � 0[775 1[920 4[838
R"x\ y# � e−bx==x=−by==y= bx � 3[198 bx � 0[833 1[012 4[164

by � 3[564 by � 0[096
R"x\ y# � e−bx==xcosa¦y=sina=−by==x=cosa¦y=sina= bx � 3[770 bx � 1[938 0[871 3[836

by � 1[897 by � 9[860
a � 5[808 a � 9[065

R"r# �"0¦b = r# = e−b=r b � 09[950 b � 2[477 1[148 5[677
R"x\ y# �"0¦bx = =x=# = e−bx==x= ="0¦by = =y=# = e−by==y= bx � 8[396 bx � 3[938 1[203 5[335

by � 8[820 by � 1[506
R"x\ y# �"0¦bx = =x = cos a¦y = sin a=# = e−bx==x=cosa¦y=sina= bx � 09[78 bx � 3[135 1[164 5[138

×"0¦by = =y = cos a¦x = sin a=# = e−by==y=cosa¦x=sina=

by � 6[544 by � 1[305
a � 9[835 a � 9[115

R"x\ y# � e−bx==x=−by==y=−b==x===y= bx � 1[903 4[147
by � 0[015
b � −9[069

where r � zx1¦y1\ x � xi−xj\ y � yi−yj[

con_rmed by extensive in situ tests performed by the author[ Several correlation functions were
used for approximation of obtained results[ They are presented in Table 0[

The global and the local approaches to the description of soil randomness were considered[ In
the global approach\ deviations are calculated subtracting mean value "m# for the measured values
"t# and in the local approach a trend "T# is subtracted from the realisation "t#[ Loss function is a
sum of squared deviations[ Its come from the performed analysis that several correlation functions
could be used to approximate the test results[ One of them is a function of a separable correlation
structure which is especially convenient in further analysis[

Due to equations describing the random elasticity\ the random _eld of the modulus of elasticity
must be di}erentiable\ so the following covariance function can be taken from Table 0 for further
considerations]

Rb"t0\ t0\ t2# � R0"t0#R1"t1#R2"t2# "1#

where

Ri"ti# �"0¦liti# e−l0ti\ i � 0\ 1\ 2\ ti − 9 "2#

ti � =x?i−xýi =\ li−correlation decay coe.cient[

The correlation distance "bi � 0:li#\ instead of the correlation decay coe.cient is commonly used
in the literature[

Presented in Table 0 are the results obtained for one type of soil viz silty clay\ so they cannot
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form a proof that the separable correlation structure is valid for all types of soil[ Unfortunately
the author could not _nd in the literature any information referring to this problem[ So at the
present stage\ the validity of the separate correlation structure for other soils should be regarded
only as an assumption[

2[ Random elasticity equations

The states of stress and strain at each point of the elastic soil medium are fully described by
stress sij and strain oij tensors[ For small deformations\ the strain tensor is de_ned in the following
way]

oij �
0
1 0

1ui

1xj

¦
1uj

1xi1\ i\ j � 0\ 1\ 2 "3#

where ui is a displacement vector[
Here the Einstein summation notation is applied[
The stress tensor should satisfy the following equilibrium conditions]

1sji

1xj

� −Xi "4#

where Xi represent body forces[
Stresses and strain are related to each other through the material law[ For the elastic continuum\

the Hooke|s law is valid\ which for multidimensional state of stress and strain can be written in
the form]

sij � Cijklokl\ i\ j\ k\ l � 0\ 1\ 2 "5#

where Cijkl is an elasticity tensor[
For a homogeneous and isotropic medium\ the elasticity tensor\ in terms of Lame�|s constants l

and m\ can be written as follows]

Cijkl � ldijdkl¦m"dikdjl¦djldjk# "6#

where dij is the Kronecker|s symbol[
In the case of a stochastic soil medium\ treated as a random elastic continuum\ the elastic

parameters are not constant anymore[ They vary from point to point\ so they are functions of
locations[ Thus\ we can write]

Cijkl � Cijkl"x0\ x1\ x2#\ l � l"x0\ x1\ x2#\ m � m"x0\ x1\ x2# "7#

Substituting "3#\ "5# and "6# into "1#\ and taking into account the elasticity tensor treated as the
random _eld "7#\ the second!order stochastic di}erential equations in displacements are obtained[
Eventually they can be written in a following form]
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"l¦m#
1u

1xi

¦m91ui¦u
1l

1xi

¦
1m

1xj 0
1ui

1xj

¦
1uj

1xi1� Xi "8#

where

u �
1uk

1xk

\ 91 �
11

1xi 1xi

In order to solve eqns "8#\ the boundary conditions for a given problem must be introduced[
They can be presented either for speci_ed surface forces pi or speci_ed surface displacements ui9 as
follows]

sijnj � pi\ ui"9# � ui9 "09#

where nj are components of a vector normal to the surface[
As a result the vectorial random _eld of displacements is obtained and it can be described by

average values and a correlation function]

uk"x0\ x1\ x1#\ u¹k"x0\ x1\ x1#\ Ruk
"x?0\ x?1\ x?2\ xý0\ xý1\ xý2# "00#

Finally\ the tensorial random _eld of stresses can be found]

sij"x0\ x1\ x1#\ s¹ ij"x0\ x1\ x1#\ Var ðsij"x0\ x1\ x1#Ł "01#

In the present paper\ the description of this _eld is limited only to its mean value and the variance[
It is worth noting that the eqns "8# are stochastically non!linear\ because there is a multiplication

of two random _elds "Lame�|s parameters and displacement vector#[

3[ Plane strain analysis in a stochastic medium

In a case of the plane strain state\ the displacement in one direction "longitudinal# is constant
or in a limiting case it vanishes\ while other displacements are functions of only two variables]

u0 � u0"x0\ x1#\ u1 � u1"x0\ x1#\ u2 � c "02#

According to eqn "3# there are the following\ also 1!D\ non!zero strains]

o00 � o00"x0\ x1#\ o11 � o11"x0\ x1#\ o01 � o01"x0\ x1# "03#

The strains are related to stresses through the elastic parameters "5#\ which according to "7# are 2!
D[ Thus\ the stresses in the plane strain state are also 2!D\ and can be presented in the following
form]

sII
00 � sII

00"x0\ x1\ x2#\ sII
11 � sII

11"x0\ x1\ x2#

sII
01 � sII

01"x0\ x1\ x2#\ sII
22 � sII

22"x0\ x1\ x2# "04#

The remaining stresses are equal to zero[
The presentation of stresses are given by "04# allows one to introduce\ in a formal way\ 2!D soil

medium variability into the plane strain analysis[



J[ Przew<o�cki : International Journal of Solids and Structures 25 "0888# 4122Ð41434139

Fig[ 2[ Elementary stresses in the plane strain state[

Considering the equilibrium eqns "4#\ it is seen that in the 1!D strain state the third equation is
not identically equal to zero[ It implies the existence of a non!zero body force in this direction[
The stresses and body forces acting at the elementary cubicoid of unit width are shown in Fig 2[
In general\ the plane strain state can be modelled in the arbitrary non!homogeneous medium
provided that additional body Xi and surface forces pi are applied[

These forces are caused by constrains due to the plane strain assumption and do not allow for
the longitudinal displacements[ They are unknown and result from the equilibrium equations and
boundary conditions[

X0 � −
1

1x0 $l 0
1u1

x1

¦
1u2

1x21%
X1 � −

1

1x1 $l 0
1u1

1x1

¦
1u2

1x21¦1m
1u1

1x1%−
1

1x2 $m 0
1u1

1x2

¦
1u2

1x11%
X2 � −

1

1x2 $l 0
1u1

1x1

¦
1u2

1x21¦1m
1u2

1x2%−
1

1x2 $m 0
1u1

1x2

¦
1u2

1x11% "05a#

p1 � l 0
1u1

1x2

¦
1u2

1x11
p2 � l 0

1u1

1x1

¦
1u2

1x21¦1m
1u2

1x2

"05b#
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Fig[ 3[ Half!space in the plane strain and the uni!axial strain states[

It should be emphasised that in interpretation of the plane strain state in a stochastic medium
cannot be identi_ed with a case of soil between two rigid plates close to each other[ Such constrains
are imposed on every point within the soil medium[

Both body and surface forces are expressed in terms of displacements[ In fact\ eqns "05a# and
"05b# are not independent\ so there are eventually n � 00 unknowns and r � 8 equations[ In the
homogeneous medium there are eight unknowns and eight equations[ So\ two additional equations
must be introduced[

4[ Uni!axial strain state

For simplicity and better understanding\ the 1!D problem and its reduction to the uni!axial
strain state\ for the gravity forces only\ is considered[ The stresses acting at the elementary
rectangles in both states are shown in Fig[ 3[ Here\ the Young|s modulus is assumed to be a 1!D
random _eld[

In the uni!axial strain state\ the displacement and the strain depend only on x2]

u2 � u2"x2#\ u1 � u0 � 9

o2 � o22"x2#\ o01 � o02 � o12 � o00 � o11 � 9 "06#

but stresses are functions of two variables]

sI
22"x0\ x2# � AE"x0\ x2#o22"x2#\ sI

00 �
n

0−n
s22 "07#

where
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A �
"0¦n#"0−1n#

"0−n#

There are two equilibrium equations in the uni!axial strain state]

Xi � −
1sI

00

1x0

� −A
1

1x0

ðE"x0\ x2#o22"x2#Ł

X2 � −
1sI

22

1x2

� −A
0−n

n

1

1x2

ðE"x0\ x2#o22"x2#Ł "08#

These equations are mutually dependent\ so eventually\ there are n � 3 unknown variables u2\
o22\ s22\ X2 and r � 2 independent equations "static\ geometric and constitutive#[ Thus\ there must
be introduced one additional equation[

Let us write the Hook|s law "5# in the following form]

s¹ ð0¦af"x0\ x2#Ł � AEÞð0¦ab"x0\ x2#Ło¹ð0¦ab�"x2#Ł "19#

where each component is presented as a sum of the average "dashed# and the ~uctuated parts[
The functions f"x\ x2# and b�"x2# are unknown\ whereas the function b"x0\ x2# represents the

input random _eld of the Young|s modulus[ Equating the terms with the same power of a gives
two equations]

s¹ � AEÞo¹ � gx2

f"x0\ x2# � b"x0\ x2#¦b�"x2# "10#

The _rst one corresponds to the average solution and it is a well!known expression determining
vertical stresses in the geostatical state[

In order to solve the second equation\ two limiting cases are considered "Fig[ 4#]

Fig[ 4[ Limiting cases of soil spatial variability "a# vertical strati_cation\ "b# horizontal strati_cation[



J[ Przew<o�cki : International Journal of Solids and Structures 25 "0888# 4122Ð4143 4132

4[0[ Full correlation in a vertical direction

This case can be thought of as a medium consisting of thin vertical strata with identical densities
but di}erent moduli of elasticity\ which vary only with x0\ so b"x0\ x2# � b0"x0#[ In the uni!axial
strain state there is no strain ~uctuation b�"x2# � 9 and so the unknown function is
f "x0\ x2# � b0"x0#[ The stress in this state can be written as follows]

sI
22"x0\ x2# � gx2 ð0¦ab0"x0#Ł "11#

4[1[ Full correlation in a horizontal direction

In this case the medium is built up of the horizontal thin layers and the Young|s modulus varies
only with x2\ so b"x0\ x2# � b2"x2#[ It is obvious here that the unknown function must be equal to
zero f"x0\ x2# � 9 "strains are deterministic#\ so there is a full but negative correlation between
~uctuations of strain and the elasticity modulus[ The vertical stress is just a geostatistical one]

sI
22"x0\ x2# � s¹ � gx2 "12#

4[2[ General case

It is seen that there are two di}erent expressions for stresses "11# and "12#\ depending on the
kind of non!homogeneity represented by parameters describing elasticity[ Thus\ an equation
describing the non!homogeneity must be introduced[ For full correlation in vertical direction
b�"x2# � 9\ while for full correlation in horizontal direction b�"x2# � −b"x2#[ An attempt was
made to combine the above in one expression in possible simple form[ The best way of doing it is
to assume that the relation between b�"x2# and b"x2# can be expressed in the following way]

b�"x2# � −D"l0\ l2#b2"x2# "13#

In fact\ this is a constitutive type equation\ because it relates one of the basic values\ in this case
strain|s ~uctuations\ with the parameters describing non!homogeneity of the material[ The eqn
"13# can be also thought of as the constrain relation\ resulting from the imposed model constrain
due to plane strain assumption[ The function D\ for the considered limiting cases\ varies from 9Ð
0\ and it depends on the correlation decay coe.cients l0\ l2[ The following\ possible simple
relationship is proposed]

D"l0\ l2# �
l2

"l0¦l2#1
×$l2 = exp 0−a =

l1
0

l21¦2l0 = exp"−a = l0#% "14#

where a is some unde_ned parameter[
It is worth noting that the formulae "14# is also valid for other limiting cases i[e[ for a lack of

correlation in either horizontal or vertical direction[ For example\ the lack of correlation in the
vertical direction can be understood as a medium consisting of strata of in_nite small thickness[
Thus\ it is easy to prove that D : 0 for l2 : �[ On the other hand\ for the lack of correlation in
the horizontal direction\ we have D : 9 for l0 : �[ In the special case when l0 � l2 � l we obtain
D"l0\ l2# � exp"−a = l#[ For the case of random _eld model i[e[ l0 � l2 � 9 and a � 9 we have
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Fig[ 5[ Graphical interpretation of the function D"l0\ l2#\ for parameter a � 9[

D � 0\ what was expected[ Equation "14# does not include spatial variability of elasticity modulus
if parameter a � 9[

The relationship "14# can be presented graphically as a 2!D plot[ For a parameter a � 9 it is
shown in Fig[ 5\ whereas for a � 0 in Fig[ 6[

Taking into account "13#\ the expression for the stress "19# can be presented in the following
form]

sI
22"x0\ x2# � s¹ I

22"0¦ab2"x2#ðb0"x0#−DŁ# "15#

The above presentation of the stress in the uni!axial strain state allows for an explicit incor!
poration of 1!D random _eld of the Young|s modulus into the 0!D analysis[ The average stress is
equal to the geostatical one\ and its variance can be easily found[ Finally\ it can be written in the
form]

Var ðsI
22"x0\ x2#Ł �"agx2#1"0−D#1 "16#

For the case of constrain relationship given by "14#\ the variance of vertical stress\ in the uni!axial
strain state\ is given by the following expression]

Var ðsI
22"x0\x2#Ł �"agx2#1 = 60−

l2

"l0¦l2#1
×$l2 = exp 0−a =

l1
0

l21¦2l0 = exp"−a =l0#%7
1

"17#
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Fig[ 6[ Graphical interpretation of the function D"l0\ l2#\ for parameter a � 0[

It is worth noting that the variance approaches zero in three cases]

Var ðsI
22Ł : 9] a : 9\ l0 : 9\ l2 : � "18#

i[e[ if the variability of the Young|s modulus is small\ if there is a full correlation in the horizontal
direction or lack of correlation in the vertical direction[ In fact\ these cases de_ne a deterministic
homogeneity of the soil medium or its horizontal strati_cation[ For such cases\ stresses in the uni!
axial strain state are the same as the corresponding stresses in the plane strain analysis[

Thus\ the variance of the stress "16# can be thought of as a criterion of validity of the dimensions|s
reduction[ At the present stage of study on that problem\ one can say that the reduction is justi_ed
if the variance is small enough[ How small\ it is a matter of some quantitative studies[

In order to determine the parameter a\ numerical calculations based on the stochastic _nite
element method were performed[ The horizontal soil stratum subjected to gravity and only most
important in the practice case i[e[ l � l0 � l2 was considered[ The input data are given in Chapter
1 of the present paper[ The results\ i[e[ the variance of the vertical normal stress vs decay correlation
coe.cient are presented in Fig[ 7[ The computations were performed for four di}erent values of
decay coe.cient l � 0\ 1\ 4 and 09\ each for several depths[ They allowed to estimate the parameter
a � 9[6 and then to _nd the variance of the vertical normal stress according to "17#\ which relation
is also shown in Fig[ 7[
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Fig[ 7[ Variance of vertical normal stress vs correlation decay coe.cient[

5[ The generalisation into the plane strain analysis

The previous considerations can be generalised into 1!D reduction of a 2!D problem[
For such reduction\ two additional equations must be introduced[ They can be obtained by

considering three limiting cases shown in Fig[ 8[
In a similar way as before\ the following constitutive type relationships are proposed]

o11 � o¹11 ð0−D0b"x1\ x2#Ł

o22 � o¹22 ð0−D1b"x1\ x2#Ł "29#

Equations "29# is contrary to eqn "13# relating explicitly strains with the material|s parameters[
Now\ using "14#\ there are two parameters given in the form]

D0"l0\ l1# �
l1

"l0¦l1#1
×$l1 = exp 0−a =

l1
0

l11¦2l0 = exp"−a = l0#%
D1"l0\ l2# �

l2

"l0¦l2#1
×$l2 = exp 0−a =

l1
0

l21¦2l0 = exp"−a = l0#% "20#

Equations "29# together with basic eqns "3#Ð"5# form a set of n � 00 equations with 00 unknown
variables[ Its solution is not in the scope of this paper[

It is worth noting that a similar set of 00 equations may be obtained in a framework of the
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Fig[ 8[ Limiting cases in the spatial 2!D soil medium[

theory of constrains[ However\ such additional equations\ de_ning constrains\ would be much
more complicated than "29#\ and the solution of a general set of equations would be more di.cult[

6[ Stresses in 1!D and 2!D states

It has been shown that the stress tensor in plane strain analysis is the 2!D tensorial random _eld[
It seems to be pro_table to compare this _eld with the one from a solution of the spatial\ 2!D
problem[ Of course\ such comparison should be performed for some equivalent problems[

In the paper\ the boundary value problems of a unit force acting in the random\ elastic half!
plane and half!space are considered[ The stresses both in the plane strain state as well as in the 2!
D state can be presented\ using Green|s functions\ as sums of stochastic integrals[ For instance\
the normal stresses in the longitudinal "x0 in Fig[ 09# direction in those two states can be written
as follows]

s½ II
0 "xs# � aAEÞn g gA 6

1

1x1

ðG II
1 j
"xs\ js# f II

j "js#Ł¦
1

1x2

ð`II
2 j
"xs\ js# f II

j "js#Ł dA"js#7 "21a#

s½ III
0 "xs# � aFE ggg

V
6"0−n#

1

1x0

ðG III
0 j

"xs\ js# f III
j "js#Ł

¦n
1

1x1

ðG III
1 j

"xs\ js# f III
j "js#Ł¦n

1

1x2

ðG III
2 j

"xs\ js# f III
j "js#Ł7 "21b#

where
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Fig[ 09[ Stresses in 1!D and 2!D states[

fj � −$bXj−l¹u9

1b

1xj

−m¹
1b

1xj 0
1u¹i

dxj

−
1u¹ j

1xi1%
F �

0
"0¦n#"0−1n#

"22#

For the considered problem\ Green|s functions Gij are known as the Melan|s and Mindlin|s
solutions\ respectively[ Functions fj are random and they involve the input random _eld of the
Young|s modulus[ Depending on the superscript "II or III#\ they are 1!D " j � 1\ 2# or 2!D _elds[

The stresses in both states "in 2!D only with identical subscripts# are shown in Fig[ 6[ The
components of 1!D and 2!D stresses having identical subscripts can be related to each other[

Let us compare the equivalent terms of "21#[ For instance in a case i � k � 2 and j � l � 2 they
may be written as follows]

K �
1

1x2 ggg
V

G III
22"x0\ x1\ x2\ j0\ j1\ j2# f III

2 "j0\ j1\ j2# dj0 dj1 dj2

vV

H �
1

1x2 g gA

G II
22"x1\ x2\ j1\ j2# f II

2 "j1\ j2# dj1 dj2 "23#

It is easy to prove the following identity]
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J � g
�

−�

1

1x2

GII
22"x0\ x1\ x2\ j0\ j1\ j2# dj �

1

1x2

G II
22"x1\ x2\ j1\ j2#

�
1

1x2

G II
22"x1\ x2\ j1\ j2#

g
�

−�

1

1k2

G III
22"x0\ x1\ x2\ j0\ 9\ 9* dj

1

1x2

G II
22"x1\ x2\ 9\ 9#

� g
�

−�

1

1x2

K

H

H

k

1

1x2

G III
22"x0\ x1\ x2\ j0\ 9\ 9#

1

1x2

G II
22"x1\ x2\ 9\ 9#

G II
22"x1\ x2\ j1\ j2#

L

H

H

l

dj0

� g
�

−�

1

1x2

ð`"x0\ x1\ x2\ j0#G II
22"x1\ x2\ j1\ j2#Ł dj0 "24#

A function `"x0\ x1\ x2\ j0# introduced in "24# is given by the formula]

`"x0\ x1x\ 2\ j0# �

1

1x2

G III
22"x0\ x1\ x2\ j0\ 9\ 9#

1

1x2

G II
22"x1\ x2\ 9\ 9#

"25#

It is assumed that this function is determined for constant values of j1 and j2 " for simplicity equal
to zero#\ and must ful_l the following condition]

g
�

−�

`"x0\ x1\ x2\ j0# dj0 � 0 "26#

The assumption of statistical anisotropy]

b"j0\ j1\ j2# � b0"j0#b1"j1\ j2# "27#

allows one to present the random function appearing in "21# as follows]

f III
j "j0\ j1\ j2# � b0"j0# f II

j "j1\ j2# "28#

Substituting "25# and "28# into "25#\ the term K can be presented in the following form]

K � ggg
V

1

1x2

ð`"x0\ x1\ x2\ j0#G II
22"x1\ x2\ j1\ j2#Łb0"j0# f II

2 "j1\ j2# dj0 dj1 dj2

� ggg
V
$G II

22"x1\ x2\ j1\ j2#
1

1x2

`"x0\ x1\ x2\ j0#
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¦`"x0\ x1\ x2\ j0#
1

1x2

G II
22"x1\ x2\ j1\ j2#% b0"j0# f II

2 "j1\ j2# dj0 dj1 dj2

� g gA

G II
22"x1\ x2\ j1\ j2# f II

2 "j1\ j2# dj1 dj2 = gj0

1

1x2

`"x0\ x1\ x2\ j0#b0"j0# dj0

¦g gA

1

1x2

G II
22"x1\ x2\ j1\ j2# f II

2 "j1\ j2# dj1 dj2 = gj0

`"x0\ x1\ x2\ j0#b0"j0# dj0 "39#

Substituting function H given by the second expression of "25# into "39#\ the term K may be
eventually determined by the following expression]

K � $gH"x1\ x2# dx2%×gj0

1`
1x2

b0"j0# dj0¦H"x1\ x2# gj0

`b0"j0# dj0 "30#

The term K is a component of stress in a 2!D analysis whereas the corresponding term H is a
component of the stress in the plane strain analysis[ The expression "30# explicitly relates these
two terms[

Finally\ the spatial stress can be presented as a sum of two components]

s½ III
00"x0\ x1\ x2# � s½ II

00"x0\ x1\ x2#¦R"x0\ x1\ x2# "31#

The _rst one re~ect the plane strain stress and may be given in the form of a 2!D random _eld[
The second component can be treated as a correction term and it represents the longitudinal
in~uence of the spatial analysis[ It is given in the form of a triple stochastic integral[

The case of the generalisation into a plane strain analysis is rather di.cult[ However\ the
approach presented in the paper can be regarded as a framework for further theoretical and
numerical research in a _eld of dimension|s reduction in stochastic soil mechanics[

7[ Case study

An attempt is presented to _nd a transfer function k between variances of stresses for 1!D and
2!D states[ Such function permits to _nd the variances for 2!D state if a variance in 1!D state is
known[ It can be written as follows]

Var ðs½ III
i\ j "x1\ x2#Ł � k = Var ðs½ II

ij "x1\ x2#Ł "32#

The above was performed for a strip foundation of width B � 1[4 m and intensity of loading
p � 09 kPa\ placed on a soil stratum of thickness h � 19 m\ underlaid by a smooth\ rigid base[ The
numerical calculations were performed both in plane strain state and in 2!D state[ The following
parameters characterising soil medium and its randomness were assumed] Poisson|s ratio n � 9[2\
expected value of elasticity modulus EÞ� 099 MPa\ its coe.cient of variation aE � 9[0 and three
values of decay coe.cient l � 0\1 and 4[ It was also assumed that the covariance function is given
by "1# and "2#[ The comparison of solutions for both states allows to _nd out a suitable transfer
function k that appears in formulae "32#[
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Fig[ 00[ Strip foundation and _nite element mesh applied in 2!D analysis[

The computations were performed using modi_ed version of program NONSAP for stochastic
_nite element method "FEM#\ where simulation procedure described by Bielewicz et al[ "0885# was
applied[ The foundation and assumed 2!D mesh is presented in Fig[ 00[

The obtained standard deviations of normal vertical stresses S II
s and S III

s \ for decay coe.cients
l � 0\ l � 1\ l � 4 ðm−0Ł were approximated by linear relationships[ The relationship between
standard deviations for 1!D and 2!D states\ and for one decay coe.cient l � 4 is shown in Fig[
01[ It can be written in a following form]

S III
s � b = S II

s "33#

where b � 0[152[
The results obtained for all considered decay coe.cients are presented in Fig[ 02[ It is seen that

the standard deviation of normal vertical stress for 2!D state varies exponentially[ A good _tness
was obtained for the function given by the following expression]

k � ðexp"c = ln#Ł1 "34#

where the coe.cients appearing in "34# were found to be equal c � 9[05\ n � 9[07[ The square root
expressed by "34# transfer function is presented in Fig[ 02[

8[ Remarks and conclusions

The problem of reducing dimensions in the stochastic soil medium is analysed[ In a framework
of random elasticity the problems of the geostatistical state of stresses\ uniform vertical surface
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Fig[ 01[ Relationship between standard deviations of normal vertical stresses for 1!D and 2!D analyses[

Fig[ 02[ Transfer function between standard deviations of normal vertical stress in 1!D and 2!D states[
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loading and unit forces acting in the statistically homogeneous half!plane and half!space are
considered[ As the result of imposed constrains due to the plane strain assumption\ the additional
body and surface forces are induced[ In order to determine them\ additional equations in a form
of constrain relations are proposed[

The analysis performed allows one to present the stress tensor for a 2!D analysis as a sum of
two components[ The _rst one re~ects the plane strain state stress tensor\ but given in the form of
the 2!D random _eld[ This term allows for incorporating spatial\ 2!D soil variability in a 1!D
analysis[ The second component can be treated as a correction term and it represents the longi!
tudinal in~uence of a 2!D analysis[

From the analysis performed the following conclusions can be drawn]

"0# The reduction of dimensions in the stochastic medium is possible and a spatial variability of
material properties can be included in the plane strain analysis[

"1# The conditions for applying plane strain analysis in a 2!D soil medium should be considered
in two aspects]
"a# Assumptions concerning a random _eld of the input parameters in the longitudinal direc!

tion\
"b# Analysis of _ctitious body and surface forces induced by the plane strain assumption[

"2# The stress tensor in a 2!D soil medium can be approximated as a sum of the stress tensor in
the plane strain analysis and some factor involving the in~uence of the third dimension[

Though the proposed constrain equations in this paper were introduced on the basis of loading
due to gravity\ they are also valid for the case of uniformly distributed external loading of in_nite
length[ Only limited numerical results are presented in the paper[ However\ the proposed approach
can be regarded as a framework for further numerical research aimed at application to a variety
of geotechnical problems\ for which the plane strain state is assumed[
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